Learn how to isolate and quantify Legionella from aqueous sample in less than two hours with the rqmicro method that combines immunomagnetic separation (IMS) with flow cytometry

Learn how to identify the viable Legionella population

Automated IMS combined with flow cytometry

The rqmicro.Stream instrument performs a fully automated IMS providing purified and concentrated samples ready for analysis with a standard flow cytometer (Figure 1). Combined with the rqmicro Legionella DETECT kits, it provides a complete solution for sample preparation. The target cells are isolated from aqueous samples with different matrices by using antibody-coated magnetic particles. The bacteria stained with fluorescence-labeled antibodies for subsequent analysis by flow cytometry. Moreover, the use of a viability dye allows discriminating between living and dead cells. Performance tests show a recovery of > 80% and a broad working range. Results are achieved in less than two hours instead of up to 14 days with a 10 - 40 fold higher sensitivity compared to ISO 11731. The lower detection limit is at around 20 - 50 cells per liter depending on the complexity of the sample matrix and the flow cytometric instrumentation used.

Figure 1: Quantitative results in less than two hours following a straightforward workflow from filtration to quantification using a standard flow cytometer.

Protocol

Optional for samples with complex matrices/PLUS Kit: Prefiltration of the total sample volume using a 5 μm filter and collection of the filtrate in a sterile container.

1. Filtrate the desired amount of water with a standard filtration unit, using a 0.2 μm polycarbonate filter provided with the Legionella kits.

2. Remove the filter from the filtration unit and place it into a 50 mL tube containing 3 mL of buffer 1 (incubation buffer). The filter should lie flat on the inner wall of the tube.
3. Vortex the 50 mL tube for 60 s in a horizontal position, thereby resuspending the bacterial cells in buffer 1. Remove the filter from the tube.

4. Gently mix the suspension containing the magnetic particles and add 30 µL to each sample. Centrifuge the staining dye for 2 min at maximum speed and add 30 µL to each sample.

5. Incubate the samples for 30 min at RT with gentle shaking or rocking. Protection from light is recommended but not necessary.

6. Load buffer and samples into the disposable cartridge provided with the kit. Place the cartridge into the cartridge chamber of the rqmicro.Stream and start the IMS.

7. When the process is finished, remove the cartridge and transfer the entire positive fraction (1 mL) carefully from the container into a sterile 1.5 mL tube.

8. In order to distinguish between live and dead *Legionella* cells, transfer half of the positive fraction into a fresh 1.5 mL tube and stain with 10 µL/mL viability dye, vortex and incubate for 10 min.

9. Quantify target cell with a standard flow cytometer.

Configuration of the flow cytometer

Gate cells on green (staining dye) vs. red (viability dye) in order to identify the viable cell population of interest. SCC vs. green can be used in order to obtain additional information for optimal gating.
Results

Fixed cells spiked in tap water

Figure 2. Positive control (lyophilized, chemically fixed Legionella pneumophila Philadelphia cells) spiked in tap water and processed according to protocol. Total Legionella with staining dye (Figure 2A) and viable Legionella with staining dye and viability dye (Figure 2B). Non-spiked tap water (negative control) processed according to protocol and stained with staining dye (Figure 2C). Representative plots.

L.p. SG1 cells from culture spiked in EVIAN

Figure 3. L.p. SG1 cells spiked in EVIAN and processed according to protocol. Total Legionella with staining dye (Figure 3A) and viable Legionella with staining dye and viability dye (Figure 3B). Non-spiked EVIAN (negative control) processed according to protocol and stained with staining dye (Figure 3C). Representative plots.

Reagents: Legionella pneumophila SG1 DETECT Kit.

Instrument: rqmicro.Stream